DISASTER MANAGEMENT AND RISKS

Risk Assessment is about identifying the potential hazards and risks associated with any substance, process or activity and determining ways to manage those hazards before the adverse effects become evident.

Risk Management takes a more multifaceted form if a system becomes more complex. This is what happened in Bhopal. It was in 2-3rd December, 1984; the World’s worst industrial disaster killed at least 20,000 people and left thousands maimed and helpless. The medical follow up done by Indian Council of Medical Research (ICMR), based on diverse multi-institutional projects over a 10 year period between January 1984 and May 1994, on the communities that were exposed to the leak provides a reasonably comprehensive viewpoint on both short and long-term health effects. Epidemiological studies formed the core of the study that included 25 research projects, including two multi-disciplinary ones on pathology and toxicology to determine the effects of inhaling noxious gases. The investigations also included clinical and toxicological studies. The entire work was coordinated by the Bhopal Gas Disaster Research Centre (BGDRC).

An International Journal stated earlier that the findings of the study were not made public till 2004. It was of belief that about 42 tones of Methyl Isocyanate (and other gaseous products of the runaway reaction) were leaked from the storage tank in 1984. Approximately about three-fourths of the storage tank population at that time was exposed to the leak. Large part of the populations were affected to different degrees and when experts debated on the ways to find solution, people died like flies. A total number of approximately 80,000 people were studied at severely, moderately and mildly exposed areas and compared with controls from unexposed areas. Later it was found – of the total population, 3.9 percent was affected severely, 8.6 percent moderately and 50.1 percent mildly, while 37.4 percent was not affected. Most people included in the study had no fixed occupation or fixed source of income. Nearly 70 percent of the people, lived in Kuccha houses, in the severely affected as well as control areas (areas where the gas had not spread), and prevalence of the smoking habit ranged from 0.2 to 14.3 per cent.

If one goes through the ICMR report then one could come to a conclusion that the three-fourth of the deaths occurred within the first 72 hours of the leak, which happened around mid night of December 2-3, 1984. It was the post-exposure phases that is now considered as depending on the varying clinical features, the different post-exposure phases have been classified in the study as acute (first month of exposure), sub-acute (one to three months) and chronic (more than three months). The ocular symptoms during the acute period were related to the effects of the gas(es) on the eyes and the respiratory tract. In the acute phase, in addition to respiratory complaints, including chest pain and breathlessness, there were complaints of muscle weakness, febrile illness and vomiting. After examination of blood, it was found that in this phase there were increased white blood cells and higher than normal hemoglobin levels. Situations of these types of can be termed as EXTREME EVENTS, which is beyond the natural capacity of the individuals to cope.

If we look through the doors of history then one can find that risk and crisis management is lettered with narratives about the ways in which the organizations failed to deal with the demands of ‘extreme events’. Extreme events by definition are a class of outcome that have very high consequences (often exceeding the perceived worst class scenario) but also a low probability of occurrence. These factors make them difficult areas for analysis and investigations. These may lead some individuals to come to a conclusion by dismissing their significance by stating that they are not representative of the ‘normal’ state of affairs within the ‘system’ under consideration. Extreme events call into question our understanding of the various classes of phenomenon in which they are found and the strategies that organizations have in place to deal with them.

Thus they confront the secretarial claims and their control systems and can often call into question many of the fundamental assumptions that are held about the nature of hazard. These types of extreme events are also found in Natural Disasters or catastrophes or go-physical phenomenon, extreme weather conditions and also for long term phenomenons like global warming.

For example, a region receives a clear warning about heavy downfall and the same place receives enough rainfall in a 24 hour period (which is equivalent to months of precipitation in the given region) then the scale of the event will definitely surprise many people and will cause situations which may be difficult for the local population to cope. Again, a clear look states that it is often the scale of the events that present challenges around prediction. These leads to elementary complexity in the provision of mitigating advice to those, who are exposed to these type of risks. However there are attempts to provide early warning systems to warn the people against the upcoming disasters.

‘Extreme Events’ are typified by being both high consequence and low probability events. They are events that have the potential to overpower our resistance and yet they occur so uncommonly that we are powerless to develop enough experience from them and expand effective management control strategies that are grounded in the normal trial and error learning process that characterize organizations.

Extreme eventsare however also characterized by the various attempts to ‘manage’ them so that one can prevent the process of its escalation that has the power to move a system within its boundaries of its normal perturbation towards an extreme position, where it can no longer be controlled and has the potential to cause considerable levels of damage. Here we need to understand the consequences of an extreme event rather than seeking to search for developed technologies of prognosticating their occurrence.

If we understand the possible harm that such ‘extreme events’ can cause, it would lead the outcome administrators to reflect on the process by which incidents can shoot up to generate considerable damage and how inadequate our understanding base is, which often depend around these processes.

Some organizations consider the nature of their past histories as evidence that they are ‘crisis prepared’ or ‘resilient’. The lack of sufficient information and evidence about the exact understanding of the possible harm of a particular catastrophic hazard is often seen as a ‘justification’ that the organization is prepared for such crisis. But what if these crisis takes the shape of an extreme event. The coping capacity of such organizations is largely a function of the assumptions that exist around controls, which work under a range of conditions and to an extent that they are able to cope with the task demands that they are generated by emergence.

If we look into the details then one arrives at a conclusion that there are few handful of managers who have an ‘Hand on’ experience of ‘crisis’ not necessarily an extreme event and that would allow them to manage these events with their own past histories he/she had undergone. Therefore the organizations need to engage in simulation exercises in order to ensure that managers have some experience of dealing with those processes around which the hazard might escalate. It would help if the mangers are also willing to consider the experience of other organizations, which are having similar experiences around such types of events. As crises are in essence, extreme events, our understanding of them will be a function of the observations that we can make ‘at a distance’ rather than by direct experimental learning.

However, what these extreme events do is to point to the manner in which managerial assumptions around control can generate the conditions in which catastrophic failures can occur. As such, they serve an important role in allowing us to develop strategies for coping with the consequences of extreme events or crisis by considering the range of impacts that such events can generate.

My assumption goes that these factors stated above may be lacking for what happened in Bhopal Gas Disaster in 1984. A deep look into these aspects and significant research with proper implementation of policies in these areas can help organizations, corporate and other agencies to tackle ‘extreme events’ more professionally and effectively.

Please Note: Incase, there is any mistake in the above data, kindly feel free to mail me at the e-mail address given below.

Thanks and Regards,

Mainak Majumdar

Disaster Management Specialist and Consultant

Weblink:     http://www.theideas.in/

Advertisements

MANAGING CHEMICAL DISASTERS

Chemical Disasters are burning issue these days, especially after the Bhopal Gas Tragedy subject gained momentum.  A hazardous chemical not only destroy the environment but also is injurious to human beings. One example of a chemical disaster is ‘Bhopal Gas Tragedy’ December 2-3, 1984 at Bhopal, Madhya Pradesh, India. Other examples of chemical disasters are outbreak of ‘Itai-Itai’ disease, Japan, asbestos poisoning at the City of Leeds and York in United Kingdom, Methyl Mercury Poisoning Catastrophe in Iraq in the early 1970s. There are some forty thousand chemicals in commercial use; most are subject to accidental spills or releases. These types of accident vary from small to large and can occur anywhere. Chemicals are found, from oil drilling rigs to factories, tanker trucks to fifty-five-gallon drums and all the way to the local dry cleaner or your garden tool shed.
Taking all aspects in account many global initiatives have been taken for non-proliferation, counter-proliferation and consequence management of Chemical Disaster Management. These led to the establishment of Organization for the Prohibition of Chemical Weapons (1997) with its headquarters at Hague, which is also the implementing body of the Chemical Weapons Convention (CWC or convention). The initiative of formation of Organization for Prohibition of Chemical Weapons was taken on 3rd September 1992.
The State signatories of the Convention on the Prohibition of the Development, Production, Stockpiling, use of Chemical Weapons and on Their Destruction, adopted by the Conference on Disarmament at Geneva on 3 September 1992 decided to take all necessary measures to ensure the rapid and effective establishment of the future Organization for the Prohibition of Chemical Weapons. To this end there was a need to establish a Preparatory Commission with the following objectives:
1. Approve the Text on the Establishment of a Preparatory Commission, as annexed to the present resolution;
2. Request the Secretary-General, in accordance with paragraph 5 of resolution A/RES/47/39, adopted by the General Assembly on 30 November 1992, on the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on Their Destruction, to provide the services required to initiate the work of the Preparatory Commission for the Organization for the Prohibition of Chemical Weapons.
In order to ensure the implementation of the provisions the following was to be included:
a) International verification of compliance
b) Provide a forum for consultation and Co-operation among state parties, including those in Chemical Convention
Till now OPCW member states already represent about 98% of the global population and landmass. A state becomes a State Party, and thereby a member of the Organization, by one of three means — ratification, accession or succession. Instruments of ratification, accession or succession must be deposited with the designated Depositary of the Convention, who is the Secretary-General of the United Nations. (OPCW).

As of now, there are 188 signatories to the chemical convention, six other countries have signed the proposal but have not ratified it.
Under Article 1 General Obligations, each state party to this convention undertakes provisions which are termed as NEVER under any circumstances:
1.

a) To develop, produce, otherwise acquire, stockpile or retain chemical weapons, or transfer, directly or indirectly, chemical weapons to anyone;
b) To use chemical weapons;
c) To engage in any military preparations to use chemical weapons;
d) To assist, encourage or induce, in any way, anyone to engage in any activity prohibited to a State Party under this Convention.
Article: 2
Each State Party undertakes to destroy chemical weapons it owns or possesses, or that are located in any place under its jurisdiction or control, in accordance with the provisions of this Convention.
Article: 3
Each State Party undertakes to destroy all chemical weapons it abandoned on the territory of another State Party, in accordance with the provisions of this Convention.
Article: 4
Each State Party undertakes to destroy any chemical weapons production facilities it owns or possesses, or that are located in any place under its jurisdiction or control, in accordance with the provisions of this Convention.
Article: 5
Each State Party undertakes not to use riot control agents as a method of warfare.
In a statement made by the Secretary General of the OPCW, on 10 June 2010, In his remarks on “Non-Proliferation of Weapons of Mass Destruction: A Personal View”, the Director-General noted that the international community has widely and appropriately recognized the proliferation of WMDs as a threat to international peace and security, as was affirmed by the UN Security Council for the first time in 1992 and reaffirmed in September 2009. He further noted that UNSCR 1540 and the UN General Assembly’s Global Counter-Terrorism Strategy underscored the urgency of the potential threat of access to WMD by non-state actors.
The Director-General said the experience of the OPCW in developing an all-encompassing regime to ban chemical weapons could offer lessons for other disarmament and non-proliferation as well. Regarding the non-proliferation dimension, he observed that inspections of commercial enterprises are specific to the Chemical Weapons Convention, and represent a unique example of collaboration between the public and private sectors in promoting security while not prejudicing legitimate business interests.
Some of the initiatives taken by the United Nations on Chemical Disasters are the resolution of 1540 (2004) of the UN Security Council (UNSC) and before to that United Nations Security Council Resolution 1373 (2001).
These later gave the way to Container Security Initiative and Initiatives by Europe and Eurasia as Operational Active Endeavour (OAE).

At the same time, Chemical Disaster was a point of discussion in the ASEAN meet. ASEAN is a geopolitical and economic organization of 10 countries located in Southeast Asia. The ASEAN Regional Forum (ARF) is the principal forum for security dialogue in Asia. Before to ASEAN, there was another organization which existed in the South East Asia region with the name Association of South East Asia, which was commonly called as ASA, an alliance which comprised of Philippines, Malaysia and Thailand. ASEAN was founded by five countries – Indonesia, Malaysia, the Philippines, Singapore and Thailand – met at the Thai Department of Foreign Affairs building in Bangkok and signed the ACEAN declaration, more commonly known as the Bangkok declaration. Later, when it’s member strength increased to 10, ASEAN moved with their new South Asian Nuclear – weapon free zone treaty.
It was then twenty first century, issues shifted and ASEAN started giving more stress on environmental perspectives. They tried to incorporate Environmental agreements into their discussion forums. These led to the signing of Agreement on Tran boundary Haze Pollution in 2002 as an attempt to control haze pollution in the Southeast Asia. Some other treaties signed are Cebu Declaration on East Asian Energy Security, the ASEAN-Wildlife Enforcement Network in 2005 and the Clean Development and Climate treaty.
It draws together 23 countries, which have a bearing on the security of the Asia-Pacific Region.

There is also another treaty of the Basal Convention on the control of Transboundary Movement of Hazardous Wastes and their Disposal. The basic objectives of the Basel Convention are the control and reduction of Transboundary movement of hazardous and other wastes, subject to the convention; prevention and minimization of their generation, environmentally sound management of such wastes and for active promotion of the transfer and use of cleaner technologies.
Several treaties are formed by countries now to ban the Weapons of Mass destruction and let’s now discuss on some different types of chemical agents, which may be the cause of a chemical disaster:
a) Chemical warfare agents
b) Dual use chemicals
c) Toxic Industrial Chemicals/Materials (TIC/TIM)
d) HAZCHEM and their waste by-products
e) Agricultural chemicals
f) Other poisonous substances
g) Natural Gas and Petroleum Products

The chemical warfare agents may exist in liquid, gas or solid form. They can be classified based on their chemical nature, like organo-phosphorous, organo-sulphur, organo-fluorine, arsenicals and others; persistency or dose dependent lethal and incapacitating properties. Above all, the most widely used classification is based on their physiological effects. These can be also segregated as nerve agents, blistering agents, blood agents, lung agents, psychic incapacitate, riot control agents and toxins. The chemical warfare agent’s efficiency can be determined by the following:
a) The efficiency of the delivery system, such as munitions and low-flying aircraft.
b) Modes of disposal or dissemination, like spray tanks
c) Vulnerability of the potential target
d) Meteorological conditions, like wind velocity and direction, humidity, temperature etc.
The Dual use chemicals are those, which can be used for military as well as for Industrial Purposes. These Industrial Chemicals may act as potential precursors of Chemical Warfare agents and are identified in Schedule 2 and 3 of the Chemicals Weapons Convention (CWC) list of chemicals. Among the most important ones are Phosgene, Cyanogen Chloride, hydrogen cyanide and chloropicrin. The interesting fact is that Phosgene is a chemical compound, which doesn’t contain phosphorous. It’s a chemical compound with the molecular formula COCl2. The Colorless gas gained the status of a chemical weapon during World War I. Now, this same chemical compound is valued as a industrial agent and building blocks in synthesis of pharmaceuticals and other organic compounds.
Phosgene is a planar molecule as predicted by VSEPR theory. The C=O distance is 1.18 A0, the C—Cl distance is 1.74 A0 and the Cl—C—Cl angle is 111.8 degree. It’s one of the simplest acid chlorides, being formally derived from carbonic acid. Because of safety issues, phosgene is always produced and consumed within the same plant and extraordinary measures are made to contain this toxic gas.
The important toxic industrial chemicals are handled by humans and if accidentally released into the environment may cause a disaster. One of the most important examples is chlorine gas. Chlorine gas was used for the first time during World War 1. Its symbol is Cl: Its molecular formula is Cl2. Its atomic number is 17 and atomic weight is 35.46. It’s a very poisonous gas and badly affects the mucous membrane.
Hazardous waste can be explosive, inflammable or prone to spontaneous combustion, corrosive and susceptible to unpredictable deadly combinations of non-compatible wastes etc.
Agro chemicals include chemicals such as pesticides, herbicides and fungicides used in agriculture to destroy insects, fungi, bacteria, pests and weeds to regulate plant growth regulators, harvest aids and soil conditioners. It’s the Bhopal Gas Tragedy that underlined the dangers arising out of the storage of pesticides or their intermediates. Similar risks are inherent in the manufacture, formulation and transport of pesticides and their raw materials, formularies and their intermediates.
Apart from these there are many other chemical agents, which can cause a chemical disaster. Methyl Mercury, Arsenic, Lead etc are agents which are of major environmental poisons.
Even Natural gas and petroleum products can be used as agents for creating havoc and causalities. LNG can be transported by tankers and can be used as cryogenic agents for causing large fires, thereby creating mass panic reaction and fatalities. CNG cascades can have a devastating effect.
Keeping all these in mind, the WMD (Weapons of Mass Destruction) Commission was launched by the Government of Sweden in Stockholm on December 16, 2003 to respond to the recent, profoundly worrying developments in International security, and in particular to investigate ways of reducing the dangers from nuclear, biological, chemical and radiological weapons.

Chaired by Dr Hans Blix, the former head of UNMOVIC and the IAEA, the WMD Commission comprises 14 eminent members, representing a broad and relevant geographical and political base with a vast reservoir of expert knowledge and political experience, spanning the Governmental, academic and nongovernmental arenas. The Commissioners serve in their personal capacity.  They meet periodically, discuss the issues, assess a range of expert studies and contribute their analyses, thoughts and proposals to the collective work of the Commission. The Commission aims to develop realistic proposals for the greatest possible reduction of the dangers of weapons of mass destruction, including both short-term and long-term approaches and non-proliferation and disarmament aspects.
The idea of an independent commission on weapons of mass destruction was initially put forward in 2002 by Jayantha Dhanapala, then UN Under-Secretary-General for Disarmament Affairs.  Concerned that in the post 9/11 geostrategic environment, weapons of mass destruction were acquiring a revived and dangerous attraction not only for states, but also for nonstate actors, such as terrorists, the idea arose from the need to find fresh and comprehensive approaches to addressing these threats from the perspectives of non-proliferation and disarmament, as well as preventing terrorism. The initiative was taken up in 2003 by the late Swedish Foreign Minister, Anna Lindh, who asked Dr Blix to set up and chair the WMD Commission.
Hence the Organization for Prohibition of Chemical Weapons states the following agenda’s:
a) Demilitarisation:
The most important obligation under the Convention is the destruction of chemical weapons. It is also the most expensive aspect of the Convention’s implementation.
b) Non-proliferation:

Each State Party shall adopt the necessary measures to ensure that toxic chemicals and their precursors are only developed, produced, otherwise acquired, retained, transferred, or used within its territory or in any other place under its jurisdiction or control for purposes not prohibited under this Convention.
c) Assistance and Protection:

Chemical weapons are frightening and dreadful weapons. All Member States have pledged to provide assistance and protection to fellow Member States threatened by the use of chemical weapons or attacked with chemical weapons.
d) International Cooperation:

The Organization’s international cooperation programmes focus on capacity building for the peaceful applications of chemistry in areas which are relevant to the Chemical Weapons Convention (CWC). Support programmes, funded by the Member States, enhance the ability of the Organization to hinder prohibited activity and to extend the benefits of peaceful uses of chemistry to all.
e) Universality:

Adherence to the Chemical Weapons Convention demonstrates a state’s commitment to disarmament and international co-operation, and helps to reinforce its position in the mainstream of international politics. It builds confidence and transparency in security-related policies at regional and international levels.
f) National implementation:

The Secretariat’s implementation-support programmes help State Parties to meet their obligations under Article VII of the Convention. This includes establishing National Authorities for effective liaison with the OPCW; taking the necessary steps to enact legislation, including penal legislation, and to adopt administrative measures to implement the Convention; identifying declarable chemical-industry and trade activities; and submitting accurate declarations.
Trauma and Community Behaviour during a Chemical Disaster:

Chemical disaster has very far reaching effects beyond the immediate victims. Since fear is deliberately created and exploited during such attacks, it can undeniably be regarded as a form of psychological warfare affecting and attacking the behaviour of much wider target population. It is often very difficult to differentiate psychological harm caused by chemical terrorism from other illness. Previous events have showed that a large number of patients with psychological distress will impact emergency response and potentially overwhelm the health care system. There need to be strategies that need to be developed which could eliminate fear and will decrease subsequent mass psychological distress that may likely occur during a chemical disaster.
Research and documentation needs to be done on this subject and to find ways to reduce mass panic and bring normalcy.  There need a proper management of risks and need lot of research to find proper solutions. Risk Assessment is about identifying the potential hazards and risks associated with a substance, process or activity and determining ways of managing those hazards and risks before adverse effects become evident. A hazard is that which has the potential to cause harm either living organisms or to the physical environment. Risk is the likelihood or probability of suffering a harmful effect or effects resulting from exposure to some chemical, biological or physical agent or some other adverse effect occurring.
The evolutionary approach to risk assessment becomes less useful the more complex a system becomes. Indeed, a more rigid and mathematically based approach to risk assessment is developing because many people- made systems are so complex that it is not possible for one single person to understand the whole system. Risk Assessment attempts to quantify the probabilities and degrees of harm that result from a complex operation – which can significantly bring down the scale of Disasters which may be by accident or human induced. Proper assessment with proper mitigation strategies will definitely help to lessen the effects of a Chemical Disaster.

Please Note: The above writing on ‘Chemical Disaster’ is focused to aware the people and also to disseminate knowledge for students and members of the public to learn and know the ways to save oneself from Chemical Disasters. Incase, there is any mistake in the above data, kindly feel free to mail me at the e-mail address given below.

(Ref: Data taken from Organisation For The Prohibition Of Chemical Weapons, WMDC, National Disaster Management, ASEAN etc)
Thanks and Regards,
Mainak Majumdar
Disaster Management Specialist and Consultant